
STACKHAUS KIEL MOE

۲

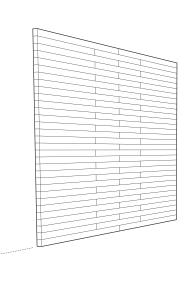

Among contemporary residential construction techniques, the layered wall assembly remains largely unquestioned—an allegedly efficient system which can be deployed to different architectural ends and effects, but which is itself more or less inviolable. As a challenge to this assumption, Kiel Moe's StackHaus near Granite, Colorado, rethinks the layered wall assembly and proposes in its place a single, monolithic wall, comprised of stacked 6x8 spruce timbers. These timbers act as the structure, enclosure, finish material, and insulation of the building.

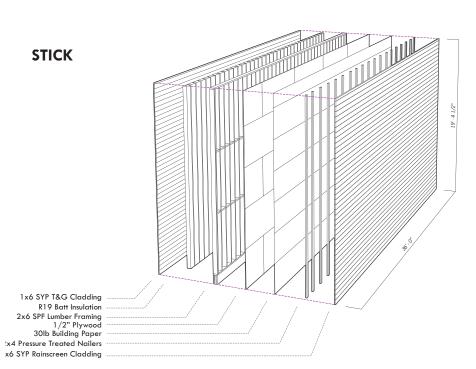
The material choice is possible in part because of the modesty of the project—a 360 sq ft multipurpose space, essentially a single room. There is neither plumbing nor HVAC, and the building has no energy input other than the sun and the wind. One of eight buildings constructed by Moe on the rural site, which sits at the base of the Collegiate Peaks and overlooks the Arkansas River, the building functions as a yoga and painting studio, a performance space, and a kind of mini-theater for recitals, plays, and readings.

But the seemingly inefficient use of solid wood construction is also a deliberate response to the site. The spruce is harvested, dried, and milled in the same valley as the project, yielding a surprisingly small transportation footprint. Moe compares this with the thousands of miles from which the materials in a typical "stick" construction assembly—framing, plywood, insulation, etc.—are trucked to the site. The building's straightforward construction also exceeds its apparent simplicity, using lower technology to yield higher performance. Although it has greater mass than a layered construction, its embodied energy is dramatically lower. Moe's design capitalizes on the low thermal conductivity of spruce to regulate temperatures in both summer and winter. Wood is also the only material that sequesters carbon, so this solid wood building ultimately yields a carbon surplus, sequestering twice as much carbon as it took to produce the building itself. And there is even a resultant "gain" in design time as a result of the simplified construction technique.

In this modest building Moe proposes a larger ecological argument, tackling what he terms "eco-logistics"—the practices and systems which are outside the domain of the object itself, but which have a meaningful impact on the architecture. In other words, how architecture impacts landscapes, economies, climate, and vice versa. These "extensive" architectural logics are often ignored or elided in the pursuit of design as the ultimate end. For Moe, however, they become primary considerations in the work and are themselves integrated into the design thinking. —AMANDA REESER LAWRENCE

۲

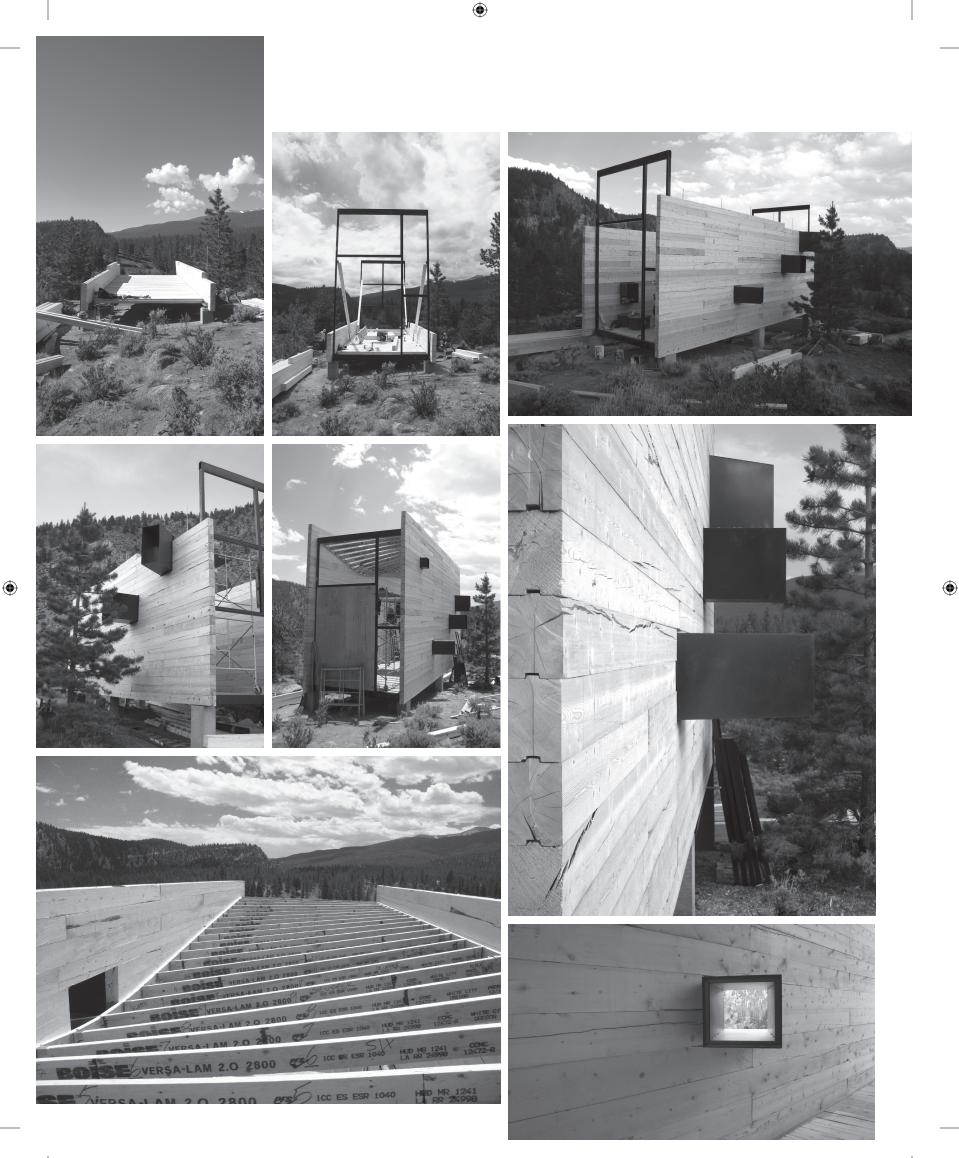

۲


facing page: StackHaus's minimal transportation footprint as com-pared with that in typical "stick" construction directs more budget and resources into the building itself rather than its "externalities."

right: Two parallel, 19.5 ft tall solid wood beams provide the primary structure, enclosure, finish materials, and thermal strategy for StackHaus.

below: The simplicity of StackHaus's solid wood wall, at left, compared to the layered wall assembly that dominates contemporary residential construction.

۲

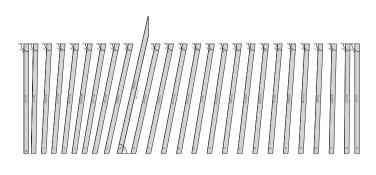


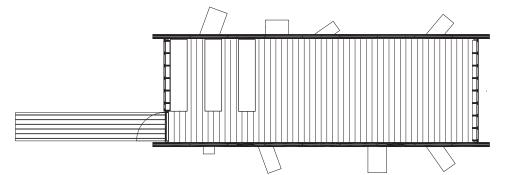
۲

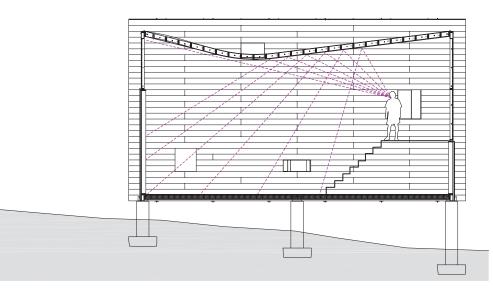
6x8 Spruce Timbers

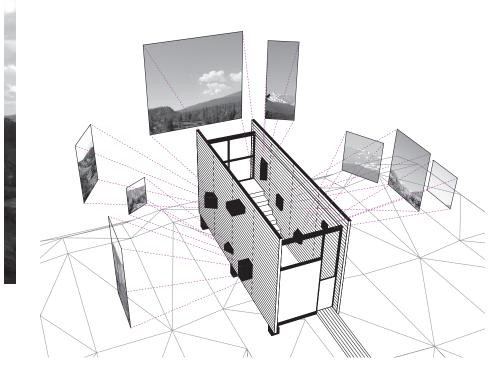
۲

STICK


PRAXIS 13


facingpage: 6x8 spruce timbers support the ruled surface roof. Once a timber is installed, it is largely complete. The spruce walls will shrink about 2 in. as they dry. A series of tunable, threaded rods compress the timbers as the material shrinks around slotted connections to the steel moment frames and window boxes.


۲


left: A series of steel boxes inserted into the spruce wall provide views and cross ventilation.

below: Roof framing, plan, and section. The asymmetrical belly of the ruled surface roof distributes light and sound in the interior while draining rain and snow from the roof above.

۲

								kg/CO2
lateria: Interia: Imber Imber Iywood teel oncrete slazing ther materials			pounds 18,032.00 3 1,592.36 5,148.64 14,850.00 1,062.00 238.92 43,741.85	meters ³ 22.20 2.82 1.28 1.33 2.80 0.21 0.19 30.82 72.02%	kg 8,179,18 1,278,19 722,28 2,335,39 6,735,85 481,72 157,36 19,889,96 41,12%	EE (MJ) 16,358.36 9,458.62 7,484.08 31,761.24 6,399.05 7,225.73 2,346.99 81,084.06 20.19%	EC (kgCO2) 2,453.75 575.19 4/6.49 4,133.63 868.92 409.46 79.68 8,997.13 27.27%	
		-792 kgCo2	eq./m²				-17582.72 kg	
					137.39			
17,582.72 kg•COaEG				8,997, 13 4	sg • ctore S	TEEL MBER		
Project StackHaus / Location Bar, near Granite, Colorado, 20 Design Kiel Moe with and for R Engineer Chuck Keyes, P.E. of and Martin, Lakewood, CO / Co Kiel Moe with Jacob Mans and	The Georgia 008 / on Mason / Martin mstruction				-CO2 EQ. GWP 5	TEEL		

۲

۲

Embodied Energy of Stick an	a order								
						. 3	3		
/a Framing: 2x6 stud			lengih 1 8.2	lineer feef 710	volume per 0.06	feet ^e 40.66	melers l 1.15	E (MJ per unit)	
a Framing: 2x6 p ate		2	36			4.12			
a Framing: blocking									
'a Framing: 2x12 beam W									
ywood: 1/2"								9440	
att neu attion: R 19 x 12"				648					
teriar Finish: 1x6 SYP #1 ain Screen: 2x4 nai er								4692	
in Screen: 2x6 c adding				1404		80.44			
	Rain Screen: tota								
								nbodied Energy	4295
	óx8 tímber								
								nbodied Energy	742
ack: Carbon Sequestrati	ion								
aterial ¹ nbe r					meters ^a 22.20				
mber									
		45.0					7,484.0)8 476.4	
eal morate		47.0		5,148.64 4 950 00	1.33 2.80				
				4,850.00 1,062.00		6,735.85 481.72			
ther materials									
Beoff Hammond and Craig Jones. Inven	ntory of Carbon and Energy (IC)	i) . Version 1.úe. 2			1. Tab e 83.33 p. 161	NET CAR	BON SEQUEST	-17382.7 RATION -8585.5	
Geoff Hammond and Craig Janes, Inven	nory of Carbon and Energy (IC) as Stark, and Martin Zeumer, E	i) , Version 1.6a, 2 nergy Manoal: Sud	008 ainable Architec	ctive - Birkhauser, 2006				RATION -8585.5	59 kgCO2 eq.
Geoff Hammond and Craig Janes. Inven	ntory of Carbon and Energy (ICI es Stark, and Martin Zoumer, E TT	i) , Version 1.6a, 2 nergy Manoal: Sud	008 ainable Architec	ctive - Birkhauser, 2006					59 kgCO2 eq.
Geoff Hammond and Craig Janes, Inven	nory of Carbon and Energy (IC) as Stark, and Martin Zeumer, E	i) , Version 1.6a, 2 nergy Manoal: Sud	008 ainable Architec	ctive - Birkhauser, 2006				RATION -8585.5	i9 kgCO2 eq. rofure)
Geoff Hammond and Craig Janes. Inven	ntory of Carbon and Energy (ICI es Stark, and Martin Zoumer, E TT	i) , Version 1.6a, 2 nergy Manoal: Sud	008 ainable Architec	ctive - Birkhauser, 2006				RATION -8585.5	i9 kgCO2 eq
Geoff Hammond and Craig Janes, Inven	ntory of Carbon and Energy (ICI es Stark, and Martin Zoumer, E TT	i) , Version 1.6a, 2 nergy Manoal: Sud	008 ainable Architec	ctive - Birkhauser, 2006				RATION -8585.5	i9 kgCO2 eq
Geoff Hammond and Craig Janes, Inven	ntory of Carbon and Energy (ICI es Stark, and Martin Zoumer, E TT	i) , Version 1.6a, 2 nergy Manoal: Sud	008 ainable Architec	ctive - Birkhauser, 2006				RATION -8585.5	i9 kgCO2 eq
Geoff Hammond and Craig Janes. Inven	nory of Carbon and Energy (IC) ce Start, and Martin Zeumer. E 10000	i) , Version 1.6a, 2 nergy Manoal: Sud	cos Com	ctive - Birkhauser, 2006				RATION -8585.5	i9 kgCO2 eq
Geoff Hammond and Craig Janes, Inven	ntory of Carbon and Energy (ICI es Stark, and Martin Zoumer, E TT	i) , Version 1.6a, 2 nergy Manoal: Sud	Co m High	etwe. Birthauser, 2008 ยี บุตรีที่เขามีห				RATION -8585.5	i9 kgCO2 eq
Geoff Hammond and Craig Janes, Inven	nicey of Carbon and Energy (CC os Start, and Martin Zeumer, 8 1000 1000	i) , Version 1.6a, 2 nergy Manoal: Sud	Co m High	etwe. Hirthauser, 2008 CUCIII VIII Volumetric				RATION -8585.5	i9 kgCO2 eq
Geoff Hammond and Craig Janes, Inven	nicey of Carbon and Energy (CC os Start, and Martin Zeumer, 8 1000 1000	i) , Version 1.6a, 2 nergy Manoal: Sud	Co m High	etwe. Hirthauser, 2008 CUCIII VIII Volumetric	y - Then			RATION -8585.5	59 kgCO2 eq
Geoff Hammond and Craig Janes. Inven	nicey of Carbon and Energy (CC os Start, and Martin Zeumer, 8 1000 1000	i) , Version 1.6a, 2 nergy Manoal: Sud	Co m High	etwe. Hirthauser, 2008 CUCIII VIII Volumetric	y - Then	mail Dif		RATION -8585.5	59 kgCO2 eq
Geoff Hammond and Craig Janes, Inven	nicey of Carbon and Energy (CC os Start, and Martin Zeumer, 8 1000 1000	i) , Version 1.6a, 2 nergy Manoal: Sud	Co m High	etwe. Hirthauser, 2008 CUCIII VIII Volumetric	y = Ther soci Titaniun	mail Dif		RATION -8585.5	i9 kgCO2 eq
Geoff Heanmond and Graig Jenes. Inven Hegger, Manfred, Mathilas Ruha, Thorn	nicey of Carbon and Energy (CC os Start, and Martin Zeumer, 8 1000 1000	i) , Version 1.6a, 2 nergy Manoal: Sud	Co m High	etwe. Hirthauser, 2008 CUCIII VIII Volumetric	y = Ther sea	mail Dif		RATION -8585.5	i9 kgCO2 eq
Seoff Hammend and Graig Janes. Inver Jegger, Monfred, Mathilas Pichs, Thorn	nicey of Carbon and Energy (CC os Start, and Martin Zeumer, 8 1000 1000	i) , Version 1.6a, 2 nergy Manoal: Sud	Co m High	etwe. Hirthauser, 2008 CUCIII VIII Volumetric	y = Ther soci Titaniun	mail Dif		RATION -8585.5	i9 kgCO2 eq
Geoff Hammond and Graig Janes. Jiver Hegger, Manfred, Mathilas Picht, Thorn	nicey of Carbon and Energy (CC os Start, and Martin Zeumer, 8 1000 1000	i) , Version 1.6a, 2 nergy Manoal: Sud	Co m High	etwe. Hirthauser, 2008 CUCIII VIII Volumetric	y = Therr Stat Titanion Stat	mail Dif		RATION -8585.5	i9 kgCO2 eq
Geoff Hammond and Craig Janes. Invest Hegger, Monired, Mothilas Picks, Thorse Dage top): The carbon uestered by the timber is about twice as much therent in all the mate-	nicey of Carbon and Energy (CC os Start, and Martin Zeumer, 8 1000 1000	i) , Version 1.6a, 2 nergy Manoal: Sud	Co m High	etwe - Birthauser, 2006	y = Therr Stat Titanion Stat	mail Dif		RATION -8585.5	i9 kgCO2 eq
Geoff Hammond and Graig Janes. Inver Hegger, Manired, Mathitas Pichs, Thore and State of the Sta	nicey of Carbon and Energy (CC os Start, and Martin Zeumer, 8 1000 1000	i) , Version 1.6a, 2 nergy Manoal: Sud	Co m High	etwe - Birthauser, 2006	y = Therr Stat Titanion Stat	mail Dif		RATION -8585.5	i9 kgCO2 eq
Geoff Heanmond and Craig Jenes. Area Regger, Manfred, Mathilas Picto, Theore and the second second second second second second second second s	nicey of Carbon and Energy (CC os Start, and Martin Zeumer, 8 1000 1000	i) , Version 1.6a, 2 nergy Manoal: Sud	Co m High	etwe - Birthauser, 2006	y = Therr Stat Titanion Stat	mail Dif		RATION -8585.5	i9 kgCO2 eq.
Geoff Hommond and Graig Jenes. Aven Hegger, Manfred, Mathilas Pich, Thore and the second second second second second second second second second uestered by the timber is about twice as much nherent in all the mate- y yielding a surplus of arbon. : Embodied energy a stack wall and a stick	nicey of Carbon and Energy (CC os Start, and Martin Zeumer, 8 1000 1000	i) , Version 1.6a, 2 nergy Manoal: Sud	Co m High	etwe - Birthauser, 2008 Cluight with Volumetric settic Heat Concrete Birtele	y = Therr Stat Titanion Stat	mail Dif	ifius il wilf	RATION -8585.5	roture)
Timber Glebel Reprivation Co Geoff Hommend and Craig Jenes. Iven Hagger, Manfred, Mathlas Picht, There and the second sec	nicey of Carbon and Energy (CC os Start, and Martin Zeumer, 8 1000 1000	i) , Version 1.6a, 2 nergy Manoal: Sud	Co m High	etwe - Birthauser, 2006	y = Therr Stat Titanion Stat	mail Dif		RATION -8585.5	i9 kgCO2 eq.
Geeff Hemmend and Craig Jenes. Area Regger, Monired, Monthias Picto, Theorem and the second state of the second page top): The carbon uestered by the timber is about twice as much nherent in all the mate- yyielding a surplus of arbon. : Embodied energy a stack wall and a stick y inherent in the stick xtricable from the little value to the archi-	nicey of Carbon and Energy (CC os Start, and Martin Zeumer, 8 1000 1000	i) , Version 1.6a, 2 nergy Manoal: Sud	Co m High	etwe - Birthauser, 2008 Cluight with Volumetric settic Heat Concrete Birtele	y = Therr Stat Titanion Stat	mail Dif	ifius il wilf	RATION -8585.5	i9 kgCO2 eq.
Geoff Hommond and Graig Jenes. Area Regger, Manfred, Addrides Picks, Theore and State of the State of the State state of the State of the State state of the State of the State y including a surplus of arbon. : Embodied energy a stack wall and a stick y inherent in the stick y inherent in the stick y inherent in the stick y inherent in the stick	nory of Carbon and Energy (IC) ce Start, and Martin Zeumer. E 10000	i) , Version 1.6a, 2 nergy Manoal: Sud	COB atirable Arobite CO mic	etwe - Birkhauser, 2006 Cluchi Wiff Volumente sche Heat Concret Brick	y = Therr Stat Titanion Stat	mail Dif	ifius il wilf	RATION -8585.5	i9 kgCO2 eq.
Geoff Heanmond and Craig Jenes. Aver Hegger, Manired, Mathidas Picks, Thore Page top): The carbon uestered by the timber is about twice as much sherent in all the mate- yielding a surplus of arbon. : Embodied energy a stack wall and a stick y inherent in the stick xiricable from the little value to the archi- ce larger collective. Thermal diffusivity,	Thermall Conductivity, (W/m.K)	i) , Version 1.6a, 2 nergy Manoal: Sud	COB atirable Arobite CO mic	etwe - Birthauser, 2008 Cluight with Voluments ethe Heat Concrete a yea	y = Therr Stat Titanion Stat	mail Dif	ifius il wilf	RATION -8585.5	i9 kgCO2 eq
Beeff Hammond and Craip Jenes. Area Hegger, Manfred, Mathids Fich, Theor Bage top): The carbon usstered by the timber is about twice as much therent in all the mate- yielding a surplus of ribon. Embodied energy astack wall and a stick y inherent in the stick xtricable from the ittle value to the archi- e larger collective. Thermal diffusivity, a the rate at which heat imaterial, is an often	nicey of Carbon and Energy (CC os Start, and Martin Zeumer, 8 1000 1000	i) , Version 1.6a, 2 nergy Manoal: Sud	COB atirable Arobite CO mic	etwe - Birkhauser, 2006 Cluchi Wiff Volumente sche Heat Concret Brick	y = Therr Stat Titanion Stat	mail Dif	ifius il wilf	RATION -8585.5	i9 kgCO2 eq
Geoff Hammond and Craip Jenes. Aver Regger, Manfred, Manfrids Ficht, Thors and State of the State of the State state of the State of the State is about twice as much therent in all the mate- yielding a surplus of risbon. Embodied energy astack wall and a stick xtricable from the state valle to the archi- e larger collective. Thermal diffusivity, s the rate at which heat umaterial, is an often tor in the thermal per-	Thermall Conductivity, (W/m.K)	i) , Version 1.6a, 2 nergy Manoal: Sud	COB atirable Arobite CO mic	etwe - Birkhauser, 2006 Cluchi Wiff Volumente sche Heat Concret Brick	y = Therr Stat Titanion Stat	mail Dif	Carbon Sives	RATION -8585.5	i9 kgCO2 eq
Geoff Hammond and Graig Jenes. Area Pagger, Manived, Mathilas Pichs, Thore In the second seco	Thermall Conductivity, (W/m.K)	i) , Version 1.6a, 2 nergy Manoal: Sud	COB atirable Arobite CO mic	etwe - Birkhauser, 2006 Cluchi Wiff Volumente sche Heat Concret Brick	y = Therr Stat Titanion Stat	mail Dif	Carbon Sives	RATION -8585.5	i9 kgCO2 eq

Table 1 (facing pay equivalent seque walls and floor is a as the carbon inh rials combined, yi sequestered carb

Table 2 (above): En comparison of a s wall. The energy in approach is inext building yet of litt tecture or to the lite

Table 3 (right): Th Table 3 (right): Thermal diffusivity, which measures the rate at which heat flows through a material, is an often overlooked factor in the thermal per-formance of more massive approaches to architecture. In the StackHaus the relatively low thermal diffusivity of spruce is why the owner of this building can occupy it in a t-shirt and shorts in -10°F weather with no energy other than the sun. with no energy other than the sun.

10**

۲

2/16/12 8:45 PM